SOYBEAN FACTS

Soybean Rust Fungicide Use Guidelines for 2007
Determining when to apply a fungicide for soybean rust is based on several factors, starting with whether or not soybean rust is present in your field. To help you through the decision-making process, if no rust is present, go to A) to determine the crop growth stage and the risk of infection to decide whether or not a fungicide is needed. If rust is present, proceed to B) below.

A) No rust is present in field
Crop growth stages

- vegetative-before flowering
 DO NOT spray

- R1- beginning flowering through R5- beginning seed
 DETERMINE RISK

- R6 full seed
 DO NOT spray

Soybeans in growth stages R1- R6 determine RISK

Risk is determined by disease forecasts, along with national, regional and local reports of rust activity. Risk information will be updated regularly in the field crop CAT Alerts, at: http://www.ipm.msu.edu/fieldCAT.htm Other sites for risk information include http://www.sbrusa.net or http://www.stopsoybeanrust.com

- LOW Risk
 Rust is confined to southern states, not advancing northward, crop stage R1-R5 DO NOT Spray

- HIGH Risk
 Rust is advancing northward from southern states; Crop stage R1-R5 Apply a protectant fungicide
 Protectant fungicides registered for 2007: Bravo Weatherstik, Echo 720, Echo 90DF, Equus, Headline, Quadris

B) If rust is present in field-(less than 10% of leaves infected in lower canopy)
Spraying when rust can be easily found in the canopy may not provide satisfactory or economical control.

Crop growth stages

- early vegetative
 Too early - DO NOT spray

- late vegetative through R5- beginning seed
 APPLY FUNGICIDE

- R6 full seed
 Too late - DO NOT spray

Apply a curative fungicide or combination protectant/curative fungicide
Curative and Protectant/ Curative fungicides registered for 2007:
Curative: Bumper, Domark, Folicur, Laredo EC, Laredo EW, Orius,
PropiMax, Tilt Protectant/Curative: Headline SBR, Quilt, Stratego

If rust is present in the field, determine the crop growth stage and the level of infection in the canopy to decide if a fungicide application is warranted. Most reports indicate that soybean rust does not need to be controlled when detected in the vegetative crop stages as long as a curative spray program is started as soon as crop flowering begins. Spraying before flowering may be prudent if disease is increasing and the crop is approaching R1.

Need more information about fungicides? See “Fungicide Basics” on reverse side

Prepared by D. Brown-Rytlewski, Michigan State University. Modified from “2005 Soybean Rust Fungicide Guidelines” developed by D. Hershman (University of Kentucky), A. Dorrance (Ohio State University) and M. Draper (South Dakota State University).

Michigan State University programs and materials are open to all without regard to race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, marital status or family status. These fact sheets were produced by the MSU Plant Pathology Department and the MSU Extension Field Crops Area of Expertise Team.
Fungicide Basics

Why are fungicides needed to manage soybean rust?

Asian soybean rust is caused by the fungus Phakopsora pachyrhizi. None of the currently available soybean varieties are resistant to the soybean rust fungus, so the only way to stop the development of the disease is to use fungicides. Although soybean rust can not overwinter in Michigan, spores can travel on storm systems from infected fields in the south to fields in the north. Once a viable spore lands on a leaf of a healthy plant and temperature, humidity, and leaf wetness conditions are favorable, the spore can germinate and then penetrate into the leaf and cause infection. As spores are produced on infected plants, these spores can move easily from infected plants to healthy plants by wind or rainsplash or being moved about by human activity or equipment. Fields can quickly become infected due to a repeating cycle of spore production and re-infection, causing considerable loss of yield.

Avoiding fungicide resistance

Resistance is an inherited change in a plant pathogen’s susceptibility to a fungicide. Intensive use, overuse or misuse of certain fungicides can result in the development of resistance. Rotate fungicide with different mode of action categories for successive fungicide applications. Avoid making consecutive solo applications of a strobilurin or triazole. Use a protectant fungicide (P) alone for the first application, only if no rust is present, but risk is high. If rust is present (less than 10% incidence) and lesions are sporulating in the lower canopy, use a triazole.

No rust in field, soybeans at R1-R5 Risk HIGH- use:

<table>
<thead>
<tr>
<th>1st application</th>
<th>2nd application (if needed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>strobilurin</td>
<td>triazole or premix</td>
</tr>
<tr>
<td>triazole</td>
<td>premix</td>
</tr>
<tr>
<td>chlorothalonil</td>
<td>triazole or premix</td>
</tr>
<tr>
<td>premix</td>
<td>triazole or premix</td>
</tr>
</tbody>
</table>

Rust in field, soybeans at R1-R5 < 10% rust in canopy

<table>
<thead>
<tr>
<th>1st application</th>
<th>2nd application (if needed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>triazole</td>
<td>premix</td>
</tr>
</tbody>
</table>

Protectant fungicides (P)

- Protect the plant against infection
- Must be applied before the spores land on the leaf
- Stop the infection process on the leaf surface
- Have no effect once the fungal mycelia enter the leaf
- Chlorothalonil- stops germination of spores
- Strobilurins- stop spore germination, spore penetration of leaf

Curative fungicides (C)

- Can stop or slow an infection that has already occurred
- Must be applied soon after initial infection
- Are not effective once the fungus begins to produce spores
- Triazoles have limited curative activity

Protectant/curative combinations (P/C)

- Combination protectant and curative fungicides-premixed.

Fungicide mobility in the plant

Fungicides differ in their mobility in the plant. Chlorothalonil, a contact fungicide, is not absorbed into the leaves. Strobilurins are absorbed by leaves and move through the leaf, but are not truly systemic. Triazoles are absorbed by leaves and can move through water-conducting tissues to the upper parts of the plant, but do not move downward in the plant. Good coverage (especially in the lower canopy) is needed with all fungicides.

<table>
<thead>
<tr>
<th>Trade names</th>
<th>class</th>
<th>Fung. type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tilt*, Bumper*, ProplMax*</td>
<td>triazole</td>
<td>C</td>
</tr>
<tr>
<td>Domark, Folicur*, Orius*</td>
<td>triazole</td>
<td>C</td>
</tr>
<tr>
<td>Laredo*</td>
<td>triazole</td>
<td>C</td>
</tr>
<tr>
<td>Topguard*</td>
<td>triazole</td>
<td>C</td>
</tr>
<tr>
<td>Quadris</td>
<td>strobilurin</td>
<td>P</td>
</tr>
<tr>
<td>Headline</td>
<td>strobilurin</td>
<td>P</td>
</tr>
<tr>
<td>Headline SBR*</td>
<td>strobilurin/triazole</td>
<td>P/C</td>
</tr>
<tr>
<td>Quilt*</td>
<td>strobilurin/triazole</td>
<td>P/C</td>
</tr>
<tr>
<td>Stratego*</td>
<td>strobilurin/triazole</td>
<td>P/C</td>
</tr>
<tr>
<td>Bravo, Echo</td>
<td>chlorothalonil</td>
<td>P</td>
</tr>
</tbody>
</table>

*Section 18 products- no more than two applications can be made with any single Section 18 active ingredient. No more than three collective Section 18 products can be applied in a single season.